Full-length, glycosylated NSP4 is localized to plasma membrane caveolae by a novel raft isolation technique.
نویسندگان
چکیده
Rotavirus NSP4, initially characterized as an endoplasmic reticulum intracellular receptor, is a multifunctional viral enterotoxin that induces diarrhea in murine pups. There have been recent reports of the secretion of a cleaved NSP4 fragment (residues 112 to 175) and of the association of NSP4 with LC3-positive autophagosomes, raft membranes, and microtubules. To determine if NSP4 traffics to a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma membrane-enriched material that yielded caveola membranes free of endoplasmic reticulum and nonraft plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. The lack of Golgi network-specific processing of the caveolar NSP4 glycans supports studies showing that NSP4 bypasses the Golgi apparatus. Confocal imaging showed the colocalization of NSP4 with caveolin-1 early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 association during infection. These data were extended with fluorescent resonance energy transfer analyses that confirmed the NSP4 and caveolin-1 interaction in that the specific fluorescently tagged antibodies were within 10 nm of each other during infection. Cells transfected with NSP4 showed patterns of staining and colocalization with caveolin-1 similar to those of infected cells. This study presents an endoplasmic reticulum contaminant-free caveola isolation protocol; describes the presence of full-length, endoglycosidase H-sensitive NSP4 in plasma membrane caveolae; provides confirmation of the NSP4-caveolin interaction in the presence and absence of other viral proteins; and provides a final plasma membrane destination for Golgi network-bypassing NSP4 transport.
منابع مشابه
Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines
BACKGROUND One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. AIM This study aimed to compare the localization of M...
متن کاملTNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells.
A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme complex. The selective distributions of any enzyme within cells have important implications in regulating enzyme effectiveness through facilitation of access to local substrates and/or product targets. Because membrane rafts provide a spatially preferable environment for a variety of enzyme systems,...
متن کاملLocalization of the insulin receptor in caveolae of adipocyte plasma membrane.
The insulin receptor is a transmembrane protein of the plasma membrane, where it recognizes extracellular insulin and transmits signals into the cellular signaling network. We report that insulin receptors are localized and signal in caveolae microdomains of adipocyte plasma membrane. Immunogold electron microscopy and immunofluorescence microscopy show that insulin receptors are restricted to ...
متن کاملTNF- potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells
Yang B, Rizzo V. TNFpotentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol 292: H954–H962, 2007. First published October 6, 2006; doi:10.1152/ajpheart.00758.2006.—A major source of reactive oxygen species (ROS) in endothelial cells is the NADPH oxidase enzyme...
متن کاملStructure and cholesterol domain dynamics of an enriched caveolae/raft isolate.
Despite the importance of cholesterol in the formation and function of caveolar microdomains in plasma membranes, almost nothing is known regarding the structural properties, cholesterol dynamics or intracellular factors affecting caveolar cholesterol dynamics. A non-detergent method was employed to isolate caveolae/raft domains from purified plasma membranes of murine fibroblasts. A series of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 81 11 شماره
صفحات -
تاریخ انتشار 2007